Name: Supplemental Information 1: Molecular xyz coordinates Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-1
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-1
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Table S1: Coordinates of 29 molecules optimized at the B3LYP/6-311+G(d) level Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-2
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-2
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Table S2: Molecular energies of molecular No.1 (M1) to molecular No.29 (M29) (in kcal mol−1) calculated by 24 QM methods using the structure optimized at the B3LYP/6-311+G(d) level as starting structures Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-3
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-3
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Table S3: Reaction energies (in kcal mol−1) of reaction 1–20 calculated by 24 quantum mechanics methods Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-4
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-4
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Table S4: Errors of reaction energies (in kcal mol−1) of reaction 1–20, relative to the CCSD(T)/aug-cc-pVTZ results Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-5
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-5
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Table S5: Mean signed errors, standard deviations, maximum errors and minimum errors along with their reaction number (Rxn No.) of reaction energies (in kcal mol<sup>−1</sup>) of reaction 1–20 Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-6
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-6
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Table S6: Absolute errors, mean absolute errors and standard deviations of reaction energies (in kcal mol−1) of reaction 1–20. The absolute errors are given relative to the CCSD(T)/aug-cc-pVTZ results Date: 2020-05-20 00:00:00 UTC
Description: Related Article: Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulho...
DOI: 10.7717/peerj-pchem.8/supp-7
Location: http://dx.doi.org/10.7717/peerj-pchem.8/supp-7
Article: Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
|
Name: Glycerol carboxylation over biochar - Data.xlsx Date: 2020-08-17 00:00:00 UTC
Description: Related Article: Collett, Catherine, Mašek, Ondřej, Razali, Nurul, McGregor, James(2020) Influen...
DOI:
Location: https://drive.google.com/file/d/1PFCb2zhIgaVr8MUmXf2B-qibfDHXE58N/view?usp=sharing
Article: Influence of Biochar Composition and Source Material on Catalytic Performance: The Carboxylation of Glycerol with CO2 as a Case Study
|
Name: Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.202201131 Date: 2022-10-03 00:00:00 UTC
Description: Supplementary data to article
DOI:
Location: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.202201131&file=aenm202201131-sup-0001-SuppMat.pdf
Article: Rapid Plasma Exsolution from an A‐site Deficient Perovskite Oxide at Room Temperature
|
Name: Silicon Redistribution, Acid Site Loss and the Formation of a Core-Shell Texture upon Steaming SAPO-34 and their Impact on Catalytic Performance in the MTO Reaction (dataset) Date: 2020-01-01 00:00:00 UTC
Description: Silicon Redistribution, Acid Site Loss and the Formation of a Core-Shell Texture upon Steaming S...
DOI: 10.17630/09ddc03e-f121-4e79-9b55-674f64d9c8c4
Location: https://risweb.st-andrews.ac.uk/portal/en/datasets/silicon-redistribution-acid-site-loss-and-the-formation-of-a-coreshell-texture-upon-steaming-sapo34-and-their-impact-on-catalytic-performance-in-the-mto-reaction-dataset(09ddc03e-f121-4e79-9b55-674f64d9c8c4).html
Article: Silicon redistribution, acid site loss and the formation of a core–shell texture upon steaming SAPO-34 and their impact on catalytic performance in the Methanol-to-Olefins (MTO) reaction
|